6th Grade NGSS Integrated Course Sequence

Start the year off with a strong foundation. Begin with a unit on **Design Thinking** or **Scientific Method**.

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>Energy</th>
<th>From Molecules to Organisms</th>
<th>Heredity</th>
<th>Earth's Systems</th>
<th>Earth and Human Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3 weeks</td>
<td>9-12 weeks</td>
<td>2-3 weeks</td>
<td>6-9 weeks</td>
<td>2-3 weeks</td>
</tr>
</tbody>
</table>

Performance Expectations

MS-PS3.1. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes energy transfer.

MS-PS3.4. Plan an investigation to determine the relationship among the energy transformed, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

MS-PS3.5. Construct an argument, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-LS1-1. Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

MS-LS1-2. Develop and use a model to describe why sexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

MS-LS3-2. Develop and use a model to describe why sexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

MS-ESS2-4. Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

MS-ESS2-5. Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.

MS-ESS2-6. Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ETS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

MS-ETS3-4. Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

MS-ETS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

MS-ETS3-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS3-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS3-3. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Mosa Mack Units

- **Transfer Thermal Energy**
- **Cells**
- **Interaction of Body Systems**
- **Genetics vs. Environment**
- **Genetic Variation**
- **Water Cycle**
- **Weather**
- **Oceans & Climate**
- **Climate Change & Ecological Footprint**